Grading Policies & Expected HW Format

Final Project Policy
Graduate students only A final project worth 20% of the total grade is expected of all graduate students taking this course to receive four credit hours. The project’s intent is to allow you to investigate more deeply a topic of your choice that is relevant to aerospace propulsion than class time permits. The final project topic is up to you but must be proposed to, and approved by, DJB. Example topics will be discussed approximately half-way into the semester, but may include more advanced combustion analyses, non-equilibrium flow effects, case studies of engine designs, and dynamic analyses of full engines.

HW Policy
Both undergraduate and graduate students Homework will be assigned regularly. Late work will be accepted with a loss of 20% per day. Valid excuses are not penalized, but must be discussed *in advance* with DJB. (Having multiple items due on a given day is *not* a valid excuse.) Problems must be submitted in neat, professional form. You are encouraged to discuss problem sets with your classmates, but you must submit your own work.

Problem sets are due by 5:00 pm. Submit directly to DJB.

Problem solutions will be made available on the class website.

HW Format
The solution to problems are to be presented in a neat and readable format. Use one side only of clean 8.5” × 11” paper. Identify every sheet with your number on each page. Staple pages. Hand in flat: *do not fold.*

Each problem should be written up in the following manner. In addition to the points listed below, a discussion may be called for on occasion. Be concise.

1. State briefly (in your own words) the information given.
2. State the information to be found.
3. Draw a schematic of the system or control volume to be used in the analysis. Be sure to label the boundaries of the system or control volume and label appropriate coordinate directions. Show forces, flows, and label states.
4. Give the appropriate mathematical formulation of the basic laws that you consider necessary to solve the problem.
5. List the simplifying assumptions that you feel are appropriate in the problem.
6. Carry the analysis to completion algebraically before substituting numerical values.
7. Substitute numerical values, using a consistent set of units, to obtain a numerical answer. The number of significant figures should be consistent with the given data.
8. Check the answer and review the assumptions made in the solution to make sure they are reasonable.
9. Label the answer.

Note
The TA will have discretion whether your solution is readable and can opt to not grade the problem. In such a case you may re-submit the problem, or problems, to DJB in a legible form subject to the 20% per day late penalty for each problem.