Problem 1

In class we derived the Blasius similarity equation

\[f''' + ff'' = 0 \]

subject to the boundary conditions \(f(0) = 0, f'(0) = 0, \) and \(f' \to 1 \) as \(\eta \to \infty. \) Our in-class solution used results from symmetry analysis to avoid iterating. Develop one alternative solution method using either (a) a shooting method as we discussed for the Falkner-Skan solution and (b) a matrix-based method described next.

In a matrix method we discretize the domain \(\eta \in [0, \eta_{\text{max}}] \) and use finite difference approximations to estimate the derivatives \(f''' \) and \(f'' \) to the function value \(f. \) For example, if the mesh is uniformly spaced then

\[
 f'_i \approx \frac{f_{i+1} - f_{i-1}}{2\Delta \eta}, \quad f''_i \approx \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta \eta)^2}.
\]

You will need to derive or find the corresponding expression for \(f'''_i. \) With the derivatives approximated you can write the Blasius ODE as a set of coupled, non-linear algebraic equations

\[
 f'''_i + f_i \left(\frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta \eta)^2} \right) = 0,
\]

that must be simultaneously solved by the secant method or some other nonlinear root finder.

Problem 2

We showed in class that the temperature equation for incompressible boundary layers can be written

\[
 \rho C_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \frac{\partial^2 T}{\partial y^2} + \mu \left(\frac{\partial u}{\partial y} \right)^2.
\]

Using the Blasius similarity result, show that if the temperature variable is chosen to be

\[
 \Theta = \frac{T - T_e}{T_w - T_e}
\]

where \(T_e \) is the external flow temperature (outside the BL) and \(T_w \) is the wall temperature, then \(\Theta \) satisfies

\[
 \Theta'' + f(\eta) \Theta' f = -EcPr(f''^2)
\]

where \(Ec = U_e^2/(C_p(T_w - T_e)) \) and \(f(\eta) \) is the Blasius solution. What are the boundary conditions on \(\Theta \) at \(\eta = 0 \) and as \(\eta \to \infty? \)

Problem 3

Numerically solve the temperature similarity solution for the values of \((Ec, Pr) = (0.50, 0.72), (0.25, 0.72), (0, 0.72) \) and \((0, 0.01). \) Comment on what you see.