HW #4

Due Thursday 18 October 2012 in class

Problem 1 In class we derived the non-dimensional form of the governing equations for a convection-dominated problem where the pressure scale was $\rho_\infty U_\infty^2$. At low Reynolds numbers the pressure is viscous dominated. Assuming the pressure scale is $\mu U_\infty / L$, derive the non-dimensional momentum equation for the incompressible flow of a fluid. What is the limiting equation as $Re_L \to 0$? Do not assume the flow is steady.

Problem 2 In class we derived the continuity equation in Cartesian coordinates to be

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} = 0.$$

Using the integral form of the conservation of mass on the cylindrical control volume shown below, show that the equation of continuity in cylindrical coordinates (r, θ, z) is

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r \rho u_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho u_\theta) + \frac{\partial}{\partial z} (\rho u_z) = 0.$$

In doing so you will have shown that the divergence of a vector \mathbf{v} in cylindrical coordinates is

$$\nabla \cdot \mathbf{v} = \frac{1}{r} \frac{\partial}{\partial r} (rv_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (v_\theta) + \frac{\partial}{\partial z} (v_z),$$

which you’ll need for the next problem.

![Cylindrical volume element for Problem 2.](image1)

Problem 3 Using the fact that τ_{ij} is a tensor, show that the cylindrical components of τ_{ij} are

\[
\begin{align*}
\tau_{rr} &= 2\mu \frac{\partial u_r}{\partial r} + \lambda \nabla \cdot \mathbf{u} \\
\tau_{\theta\theta} &= 2\mu \left[\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \right] + \lambda \nabla \cdot \mathbf{u} \\
\tau_{zz} &= 2\mu \frac{\partial u_z}{\partial z} + \lambda \nabla \cdot \mathbf{u} \\
\tau_{r\theta} &= \mu \left[\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} \left(\frac{u_r}{r} \right) \right] \\
\tau_{r\theta} &= \mu \left[\frac{\partial u_\theta}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta} \right] \\
\tau_{rz} &= \mu \left[\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right]
\end{align*}
\]
Problem 4 Using your result from the above problem, show that the momentum equation in cylindrical coordinates is

\[
\rho \left(\frac{Du_r}{Dt} - \frac{\mathbf{u}_\theta^2}{r} \right) = \frac{\partial p}{\partial r} + \frac{1}{r} \frac{\partial \tau_{rr}}{\partial \theta} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\tau_{r\theta} - \tau_{\theta\theta}}{r}
\]

\[
\rho \left(\frac{Du_\theta}{Dt} \right) + \frac{u_r \mathbf{u}_\theta}{r} = \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta\theta}}{\partial \theta} + \frac{\tau_{r\theta}}{r}
\]

\[
\rho \frac{Du_z}{Dt} = \frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial \tau_{rz}}{\partial r} + \frac{\tau_{rz}}{r}
\]

where

\[
D = \frac{\partial}{\partial t} + u_r \frac{\partial}{\partial r} + u_\theta \frac{\partial}{\partial \theta} + u_z \frac{\partial}{\partial z}
\]

Problem 5 Consider the steady laminar flow through the annular space formed by two coaxial tubes. The flow is along the axis of the tubes and is maintained by a pressure gradient \(dp/dz \), where \(z \) is along the axis of the tubes. Show that the axial velocity profile at any radius \(r \) is

\[
u_z(r) = \frac{1}{4\mu} \frac{dp}{dz} \left[r^2 - a^2 - b^2 - a^2 \ln \left(\frac{b}{a} \right) \frac{r}{a} \right]
\]

where \(a \) is the radius of the inner tube and \(b \) is the radius of the outer tube. Find the radius at which the maximum velocity is reached, the volume rate of flow, and the stress distribution.

Problem 6 A long vertical cylinder of radius \(b \) rotates with angular velocity \(\Omega \) concentrically outside a smaller stationary cylinder of radius \(a \). The annular space is filled with fluid of viscosity \(\mu \). Show that the steady state velocity distribution is

\[
u_\theta = \frac{r^2 - a^2}{b^2 - a^2} \frac{b^2 \Omega}{r}
\]

Show that the torque exerted on either cylinder, per unit length, equals \(4\pi \mu \Omega a^2 b^2 / (b^2 - a^2) \).