Problem 1 Consider a shock tube with driver pressure p_4 and driven pressure p_1. Consider the following:

(a) As the ratio $p_4/p_1 \to \infty$, what is the limiting value of M_s, the shock Mach number?

(b) If you want to increase the shock Mach number M_s for a given value of p_4/p_1, how should you select the driver and driven gases?

(c) What is the ideal driver gas?

Problem 2 A simple shock tube consists of a constant-area tube with a diaphragm mounted at the end. The outside pressure is p_a. The tube is initially pressurized with a perfect gas of sound speed c_1 and pressure $p_1 > p_a$. The diaphragm is ruptured (instantaneously disappears at $t = 0$). Find the minimum value of p_1/p_a such that the initial outflow from the tube into the ambient fluid is choked.

Problem 3 Consider an air-air shock tube with initial temperatures $T_1 = T_4 = 300$ K. Find the pressure ratio p_4/p_1 required such that the tail of the expansion fan is stationary, e.g., $u_3 - c_3 = 0$.

Problem 4 Consider an air-air shock tube with initial temperatures $T_1 = T_4 = 300$ K with a rigid wall located at the end of driven section. Find the pressure ratio p_4/p_1 required to heat up the gas after the reflected shock from the driven section wall to 2000 K. What is the maximum amount of time this temperature is available?

*This HW is optional and, if turned in, will be used to replace your lowest HW score.